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Abstract

This paper deals with the numerical simulation of low Reynolds number flow (Re ¼ 120–180) past a circular cylinder

in orbital motion. The Navier–Stokes equations, pressure Poisson equations and continuity are written in primitive

variables in a noninertial system fixed to the orbiting cylinder and solved by the finite difference method. Ellipticity

values between 0 and 1.2 (from pure in-line oscillation through a full circle and beyond) were investigated. Sudden

changes in state (jumps) are found when time-mean or root-mean-square values of force coefficients or energy transfer

are plotted against ellipticity. Pre- and post-jump analysis was carried out by investigating limit cycles, time-histories,

phase angles and flow patterns. These investigations revealed that ellipticity can have a large effect on the energy

transfer between the incompressible fluid and a circular cylinder forced to follow an orbital path, and that small changes

in the amplitude of transverse motion can have a dramatic effect. The phase angle was altered by about 1801 at the

jumps. Also investigated were the direction of orbit, which affects the state curves belonging to the time-mean values of

lift only, and the effect of initial conditions, which alters the location of jumps without changing the state curves.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The near-wake structure of bluff bodies is extremely complex, and it seems that a theoretical approach cannot fully

clarify this structure. For this purpose, either experimental or numerical analysis is needed. A literature survey reveals

that many investigations have been performed of near-wake flow structure subject to controlled forcing, where the body

is mechanically moved. In general, relatively simple forcing methods on the cylinder have been employed, e.g., in-line or

transverse oscillation, rotational oscillation or orbital oscillation. However, in contrast to the fairly large number of

studies conducted on the in-line, transverse and rotational oscillation cases [see for example, transverse oscillation:

Öngören and Rockwell (1988), Williamson and Roshko (1988), Anagnostopoulos (1989), Meneghini and Bearman

(1995), Lu and Dalton (1996), Kocabiyik and Nguyen (1999), Blackburn and Henderson (1999), Kaiktsis et al. (2004);

in-line oscillation: Mureithi et al. (2004), Mureithi and Rodriguez (2005, 2006), Al-Mdallal et al. (2007); rotational

oscillation: Tokumaru and Dimotakis (1991), Baek and Sung (2000), Dennis et al. (2000), Poncet (2004), Al-Mdallal

and Kocabiyik (2006)], there is relatively little research carried out for the orbital motion.
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a0 cylinder acceleration, nondimensionalised

by U2/d

Ax,y amplitude of oscillation in x- or y-direc-

tions, respectively, nondimensionalised by d

aclw anticlockwise (counterclockwise)

clw clockwise

CD drag coefficient, 2FD/(rU2d)

CDv viscous drag coefficient (drag due to skin

friction)

CL lift coefficient, 2FL/(rU2d)

Cpb base pressure coefficient

d cylinder diameter, length scale (m)

D dilation, nondimensionalised by U/d

e ellipticity, Ay/Ax

E mechanical energy transfer per motion cycle,

nondimensionalised by rU2d2/2

f oscillation frequency, nondimensionalised

by U/d

F force per unit length of cylinder, FDi+FLj

(N/m)

FD drag per unit length of cylinder (N/m)

FL lift per unit length of cylinder (N/m)

i, j unit vectors in x- and y-directions, respec-

tively

n unit normal vector

p pressure, nondimensionalised by rU2

R radius, nondimensionalised by d

rms root-mean-square value

Re Reynolds number, Ud/v

St nondimensional vortex shedding frequency,

Strouhal number, fd/U

St0 nondimensional vortex shedding frequency

for stationary cylinder at a given Re

t, t time, nondimensionalised by d/U

T motion period, nondimensionalised by d/U

TMV time-mean value

U free-stream velocity, velocity scale (m/s)

u, v velocities in x- and y-directions, nondimen-

sionalised by U

v0 cylinder velocity, nondimensionalised by U

x, y Cartesian coordinates, nondimensionalised

by d

Dt time step, nondimensionalised by d/U

Y polar angle for initial cylinder position,

measured clockwise from positive x-axis

n kinematic viscosity (m2/s)

x, Z curvilinear coordinates

r fluid density (kg/m3)

F phase angle

Subscripts

L lift

D drag

mean time-mean value (also denoted by overbar)

rms root-mean-square value

n normal

pot potential flow

x, y components in x- and y-directions

1,2 for energy transfer in y- and x-directions,

respectively; on the cylinder surface and at

the outer boundary of the domain, respec-

tively

0 for cylinder motion

x, Z curvilinear coordinates
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When the cylindrical body performs a combination of in-line and transverse oscillations, such as in tube bundles of

heat exchangers, the cylinder follows a closed orbit of an elliptical type. This type of motion can be used, for instance, to

model the wave motion around cylindrical bodies. The review paper by Williamson and Govardhan (2004) summarises

the recent fundamental results concerning vortex-induced vibrations and discusses the relationship between forced and

free vibration results. The ultimate aim in the above-mentioned studies is to investigate the fluid–structure interaction of

an elastically supported body or structure placed in a moving flow and, in particular, the mechanical energy transfer

between the fluid and the body.

Oscillatory flow has been fairly widely researched [e.g., Bearman et al. (1995), Sarpkaya (1986, 2001), Chaplin and

Subbiah (1996)]. Orbital flow, in which the fluid particles follow a closed orbit, has been investigated among others by

Chen et al. (1995), who modelled the flow about a stationary horizontal cylinder placed in an orbital flow. As for orbital

motion of the cylinder, in fluid at rest an orbiting cylinder has been investigated numerically in Teschauer et al. (2002),

following a circular path only, since they were investigating a model of stirring. Williamson et al. (1998), in an

experimental study modelling a horizontal cylinder under waves, forced a cylinder to follow an elliptical orbit in still

fluid. In a numerical study, using both rough and hybrid meshes, Borthwick (1986) investigated the flow past a rotating

cylinder following a circular orbit, placed in a current. Stansby and Rainey (2001) carried out a numerical investigation

of the flow around an orbiting cylinder, only in a circular orbit, with a flexibly mounted cylinder in a current. Didier and

Borges (2008) performed a numerical analysis of the flow around a mechanically oscillated cylinder in three cases:

transverse oscillation, in-line oscillation, or the combination of these two, yielding a fully circular orbital path. In all
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three cases, the cylinders were placed in an otherwise uniform flow and the frequency of forced oscillation was varied

over a broad range, and three pairs of maximum cylinder velocity components were tested for the oscillating cylinders

(one pair was used for the orbital cylinder). They were able to identify the lock-in phenomenon in all three cases. Of the

limited number of studies concerning flow around circular cylinders forced to follow an orbital path in an otherwise

uniform flow, none address the effect of varying ellipticity values on the force coefficients or energy transfer between

cylinder and fluid. Besides being of interest as fundamental research, an elliptically orbiting cylinder in uniform flow can

model the flow around a moving cylinder in waves far below the free surface.

Among the studies investigating forced transverse oscillation of a cylinder in uniform flow, Lu and Dalton (1996) and

Blackburn and Henderson (1999) have found sudden switches in streamline patterns. In these studies, the amplitude of

oscillation was fixed and the frequency of cylinder oscillation was varied in the vicinity of the natural vortex shedding

frequency from a fixed cylinder at the same Reynolds number. Both studies found a sudden switch in flow patterns

within a very narrow frequency range, as well as a change in the phase angle between the unsteady lift coefficient and

the transverse cylinder displacement of about 1801. Blackburn and Henderson (1999) further demonstrated that the

switch is associated with a change in the sign of energy transfer between cylinder and fluid. They attributed this switch

to the competition between two vorticity production mechanisms, as it did not occur when just one mechanism was

present. The present paper describes a similar phenomenon for a more complex flow.

The present study deals with an orbiting cylinder, in forced motion, placed in a uniform flow at low Reynolds

numbers. Mechanical energy transfer, phase angle, and time-mean and root-mean-square values of lift, drag, and base

pressure coefficients are investigated under lock-in conditions to further investigate sudden switches in vortex structure

in the wake of an orbiting cylinder. Ellipticity is varied from 0 (pure in-line oscillation) through a circular orbit (1.0) and

beyond, to 1.2. In addition, the effect of orbital direction (clockwise or anticlockwise) and initial condition (the cylinder

position at the time when computations are started) are also analysed, unlike the majority of the previous studies on

flow past an orbiting cylinder. The objective of the paper is to investigate further the phenomenon of sudden changes in

vortex structure while changing the ellipticity of the orbital path.
2. Numerical approach and validation

2.1. Governing equations and boundary conditions

A noninertial system fixed to the cylinder is used to compute two-dimensional (2-D) low-Reynolds number unsteady

flow around a circular cylinder placed in a uniform stream and forced to follow an orbital path. The nondimensional

Navier–Stokes equations for incompressible constant-property Newtonian fluid, the equation of continuity and the

Poisson equation for pressure are as follows:

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ �

@p

@x
þ

1

Re
r2u� a0x, (1)

@v

@t
þ u

@v

@x
þ v

@v

@y
¼ �

@p

@y
þ

1

Re
r2v� a0y, (2)

D ¼
@u

@x
þ
@v

@y
¼ 0, (3)

@2p

@x2
þ
@2p

@y2
¼ 2

@u

@x

@v

@y
�
@u

@y

@v

@x

� �
�
@D

@t
. (4)

In these equations, u and v are the x and y components of velocity, t is time, p is the pressure, Re is the Reynolds

number based on cylinder diameter d, free-stream velocity U, and kinematic viscosity n, and D is the dilation. Although

D is theoretically equal to 0 by continuity, it is kept in Eq. (4) to avoid the accumulation of numerical errors.

The boundary conditions are as follows:

ðR1Þ cylinder surface : u ¼ v ¼ 0, (5)

@p

@n
¼

1

Re
r2vn � a0n. (6)
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ðR2Þ undisturbed domain : u ¼ upot � u0; v ¼ vpot � v0, (7)

@p

@n
¼

@p

@n

� �
pot

. (8)

On the cylinder surface (R ¼ R1 ¼ 0.5), a no-slip boundary condition is used for the velocity and a Neumann type

boundary condition is used for the pressure (see Eqs. (5) and (6)). At the far region (R ¼ R2), potential flow is assumed,

as shown by Eqs. (7) and (8). The author is aware of the fact that the potential flow assumption is not valid for the

narrow wake domain on (R2) [see also Baranyi and Shirakashi (1999)]. Our numerical analysis and tests showed,

however, that this simplifying assumption results in only a small distortion of the velocity field near the outer boundary

wake region. Since our computational results for a stationary cylinder in terms of time-mean and root-mean-square

(rms) values of force and base pressure coefficients compared well with experimental and computational values

available in the literature, this simplified boundary condition is kept.

2.2. Transformations and numerical approach

To avoid interpolation leading to poor solutions, a boundary-fitted coordinate system is used, allowing boundary

conditions to be imposed accurately. By using unique, single-valued functions, the physical domain (x, y, t) can be

mapped into a computational domain (x, Z, t) as seen in Fig. 1:

xðx; ZÞ ¼ RðZÞ cos½gðxÞ�; yðx; ZÞ ¼ �RðZÞ sin½gðxÞ�; t ¼ t, (9)

where the dimensionless radius is

RðZÞ ¼ R1 exp½f ðZÞ�. (10)

This choice of the structure of the mapping functions automatically assures that the obtained grid is orthogonal on

the physical plane for arbitrary functions g(x) and f(Z). In this study, the following linear mapping functions are used:

gðxÞ ¼ 2p
x

xmax

; f ðZÞ ¼
Z

Zmax

log
R2

R1

� �
, (11)

where subscript max refers to maximum value. Using the mapping functions (11), cylindrical coordinates with

logarithmically spaced radial cells are obtained on the physical plane, providing a fine grid scale near the cylinder wall

and a coarse grid in the far field.

Transformations (9)–(11) are single valued since in this case the Jacobian J

J ¼ yZxx � yxxZ ¼
2p logðR2=R1Þ

xmaxZmax

R2ðZÞ (12)

is positive for an arbitrary value of Z in the computational domain. In Eq. (12), subscripts x and Z denote

differentiation. Using Eqs. (9)–(11), the governing Eqs. (1)–(4) can also be transformed. The x and y components of the
Fig. 1. Mapping of the physical plane.
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transformed Navier–Stokes equations are:
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Dilation D transforms as:
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The Poisson equation for pressure will have the form
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The boundary conditions for pressure, Eqs. (6) and (8), will be transformed as:
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In these equations, the elements of the metric tensor will have the form:
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In Eq. (9), the transformation of domains does not contain time, so the mesh, which is fixed to the cylinder, does not

change with time, and therefore the transformed Navier–Stokes Eqs. (13) and (14) do not contain time components for

the mesh. The choice of transformations (9)–(11) renders the off-diagonal elements of the metric tensor zero, i.e.,

g12 ¼ g21 ¼ 0, and so the mixed second derivatives are missing from the Laplacian terms in Eqs. (13)–(16). The

transformation also ensures that the coefficients of the first-order derivatives in the Laplacian terms in the above

equations are zero [e.g., Fletcher (1997)]. Since the mapping is given by elementary functions, the metric parameters and

coordinate derivatives can be computed from closed forms, hence numerical differentiation leading to numerical errors

can be avoided. The equidistant mesh obtained in the computational plane is beneficial for computational ease.

The grid aspect ratio AR [see Fletcher (1997)], i.e., the ratio of the two sides of an elementary rectangle on the

physical plane (see Fig. 1), will have the form:

AR ¼

ffiffiffiffiffiffiffi
g22
g11

r
¼

f Z

gx
¼

xmax logðR2=R1Þ

2pZmax

.

It can be seen from this equation that the grid aspect ratio is constant over the whole computational domain. By

properly choosing the number of grid points in the x and Z directions, this constant can be set to unity, resulting in

conformal transformation. Since the grid, as well as the noninertial system of this investigation, is fixed to the

accelerating cylinder and is generated only once, velocities for grid deformation do not appear in the transformed

Navier–Stokes Eqs. (13) and (14). Equations are solved in the ‘relative’ system fixed to the orbiting cylinder. As the

cylinder is in forced motion, the x and y displacements of its origin are prescribed in time, and with this, the velocity and

acceleration of the cylinder are also prescribed.

The transformed equations are solved by the finite difference method. Space derivatives are approximated by fourth-

order central differences, except for the convective terms for which a third-order modified upwind scheme is used [see

Kawamura and Kuwahara (1984)]. The Poisson equation for pressure is solved by the successive over-relaxation (SOR)

method, with the residual level of 10�5 (this has been found to yield results basically identical to those belonging to the

value of 10�6). The Navier–Stokes equations are integrated directly over each time step, so the method is first-order

accurate in time. The Poisson equation for pressure contains the time derivative of dilation D, which is theoretically

zero for an incompressible fluid. By using this term, the dilation is set to zero at each time step, as suggested by Harlow

and Welch (1965), thus satisfying continuity. Very small time steps (0.0005 or 0.00025) are used to compensate for the

first-order approach in time. While not optimal computationally, this method gives accurate results.
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Fig. 2. Time history of fixed body lift coefficient (inertial force removed) for a transversely oscillated cylinder for two combinations of

grid and time step (dotted line: 301� 177, Dt ¼ 0.0005; solid line: 481� 283, Dt ¼ 0.00025) (Re ¼ 185, Ax ¼ 0, Ay ¼ 0.2, f ¼ 0.8St0,

St0 ¼ 0.195).
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The code was worked out for a stationary cylinder and validated, and was extended for an oscillating and then for an

orbiting cylinder. Normally, the dimensionless time step was 0.0005 and the number of grid points was 301� 177

(the minimal and maximal mesh sizes were DRmin/d ¼ 0.01059; DRmax/d ¼ 0.4148; the ratio of consecutive mesh sizes

was constant at Dri+1/Dri ¼ 1.02118). The effect of grid and time step on the solution was systematically tested by using

a second grid of 481� 283 (DRmin/d ¼ 0.00658; DRmax/d ¼ 0.2599; Dri+1/Dri ¼ 1.01317 ¼ constant) and a time step of

0.00025, which gave very similar results to those of the coarser mesh at the larger time step for both a stationary and a

transversely oscillating cylinder. One example is given in Fig. 2, which shows the time-history of lift for a transversely

oscillating cylinder (Re ¼ 185, Ay ¼ 0.2, f/St0 ¼ 0.8, St0 ¼ 0.195) at the two combinations of grid size and time step.

Since accuracy was not compromised and computational time is reduced, the majority of computations were carried out

using the coarser mesh and larger time step. The computational domain is characterised by R2/R1 ¼ 40. For each

computational case, 80–100 shedding cycles were considered. This was amply sufficient to reach full lock-in (where the

frequency of vortex shedding is identical to the frequency of the cylinder oscillation) for an orbiting cylinder for all cases

investigated here. To check whether the solution might change over a longer shedding period, 2000 cycles were

investigated and the same periodic solution as for 80 cycles was found.

2.3. Code validation for stationary and oscillating cylinders

The 2-D code developed by the author has been extensively tested against experimental and computational results for

fixed cylinders and good agreement has been found. In Baranyi and Shirakashi (1999), the comparisons with Strouhal

number versus Reynolds number based on Roshko (1954)’s experiments and with the time-mean value (TMV) of drag

versus Re chart found in Schlichting (1951). Both results compared well with the experimental results. In Baranyi

(2003), the TMV of base pressure coefficients versus Re was compared with the experimental results of Roshko (1993).

Again, very good agreement was found except for Re ¼ 180, where probably the presence of 3-D effects makes the

measurements inaccurate and unreliable. In Baranyi and Lakatos (2004), the root-mean-square (rms) value of lift

coefficient versus Re compared well with experimental results shown in Norberg (2003). Good agreement was obtained

for Strouhal number when compared with results obtained by the vortex cloud method, though due to the ‘noisy’ nature

of the vortex cloud method, there was some discrepancy in the rms values of lift and drag obtained by the two methods

(Baranyi and Lewis, 2006). A table can be found in the appendix of Baranyi and Lewis (2006) which contains results of

the present author for a stationary cylinder: Strouhal number and TMV and rms values of lift, drag, viscous drag, and

base pressure coefficients are given for Re ¼ 10–190 in increments of 5, with smaller Re increments around the onset of
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Baranyi 301x177
Chakraborty et al. (2004)

Kravchenko et al. (1999)

50 100 150

Fig. 3. Results for a stationary cylinder: time-mean viscous drag coefficient C̄Dv versus Reynolds number Re compared with

Chakraborty et al. (2004) and Kravchenko et al. (1999).

Fig. 4. Time histories (Re ¼ 185, Ax ¼ 0, Ay ¼ 0.2, f ¼ 0.8St0, St0 ¼ 0.195) of fixed body lift and drag coefficients for a transversely

oscillated cylinder, comparing (a) Baranyi and (b) Lu and Dalton (1996) (by permission of the publisher).
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periodic vortex shedding. A further comparison with computational results for a stationary cylinder can be found in

Fig. 3, which shows the TMV of the viscous drag coefficient CDv versus Reynolds number for the grid size 301� 177

and time step 0.0005, and compares them with the results of Chakraborty et al. (2004) for Re ¼ 10–50 and those of

Kravchenko et al. (1999) for Re ¼ 20–100. As can be seen, the data compare quite well.

For oscillating cylinders, experimental evidence from Bearman and Obasaju (1982) and Koide et al. (2002) shows

that lock-in increases the span-wise correlation of signals and the two-dimensionality of the flow compared to flow

around stationary cylinders. Poncet (2004) shows how the 3-D wake behind a circular cylinder can be made 2-D by
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using lock-in triggered by rotary oscillation of the cylinder. For this reason, a 2-D code is suitable even at higher

Reynolds numbers than the 190 at which three-dimensional effects start to appear for stationary cylinders (Barkley and

Henderson, 1996). Lu and Dalton (1996), for instance, used Re ¼ 185, 500 and 1000 in their transverse cylinder

oscillation study.

Lu and Dalton (1996), who used a finite difference solution of the unsteady Navier–Stokes equations with a primitive

variable formulation, carried out a systematic investigation of flow around a circular cylinder in forced transverse
Fig. 5. Time histories of lift coefficient and cylinder displacement (left) and Lissajous patterns of lift coefficient and dimensionless

cylinder displacement (right), at frequency ratios of (a) 1.5, (b) 1.75, (c) 1.95, and (d) 2.2, for cylinder oscillating in-line (Re ¼ 200,

Ax ¼ 0.1, Ay ¼ 0, St0 ¼ 0.195); from Al-Mdallal et al. (2007) (by permission of the publisher).

Fig. 6. Time histories of lift coefficient and cylinder displacement (left), Lissajous patterns of lift coefficient and dimensionless cylinder

displacement (right), at frequency ratios of (a) 1.5, (b) 1.75, (c) 1.95, and (d) 2.2, for cylinder oscillating in-line (Re ¼ 200, Ax ¼ 0.1,

Ay ¼ 0, St0 ¼ 0.195).
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oscillation at different frequency ratios from 0.8 to 1.2 and at amplitudes 0.4 and 1.0 (or rather 0.2 and 0.5, when the

amplitude is nondimensionalised by the cylinder diameter instead of the radius), as well as at Reynolds numbers 185,

500, and 1000. Computations were carried out in order to compare results with those of Lu and Dalton (1996), for the

case of Re ¼ 185, Ay/d ¼ 0.2, f/St0 ¼ 0.8 and St0 ¼ 0.195 at two different grid sizes (for Lu and Dalton, 256� 128,

Dt ¼ 0.002; 512� 256, Dt ¼ 0.001 (or, when the time is nondimensionalised by the cylinder diameter rather than the

radius, Dt ¼ 0.001 and 0.0005), and for Baranyi, 301� 177, Dt ¼ 0.0005; 481� 283, Dt ¼ 0.00025). Fig. 4 displays the

time-history of lift and drag coefficients from which the inertial forces have been removed (Lu and Dalton term this a

‘fixed body’ coefficient (see also Baranyi, 2005b), which shows the relationship between force coefficients in inertial and

noninertial systems). Fig. 4(a) shows results for 301� 177 and Dt ¼ 0.0005 (see Fig. 2 for results for both grids); results

for both of Lu and Dalton’s grids are shown in Fig. 4(b) (curves coincide so closely that they cannot be distinguished).

The curves from the two studies are very similar to each other, as are the findings for the CDmean and CLrms: Lu and

Dalton report CDmean ¼ 1.25 and CLrms ¼ 0.18 for both grids, Baranyi found CDmean ¼ 1.244 for the finer grid, 1.243

for the coarser grid, and CLrms was found to be 0.185 for both grids. The difference in dimensionless time values in

Fig. 4(a) and (b) is due to the different methods used for making the time t dimensionless (using cylinder radius for Lu

and Dalton, and here using cylinder diameter).

Forced in-line oscillation of a circular cylinder was investigated by Al-Mdallal et al. (2007) at Re ¼ 200, with a

displacement of amplitude-to-cylinder diameter of Ax ¼ 0.1 or 0.3 and in a wide frequency range of f/St0 ¼ 0.5–3.0,

where St0 ¼ 0.195. Their method of solution is based on a conjugated Fourier spectral analysis with finite

difference approximations. To validate the present code for in-line oscillation, computations were carried out for

Re ¼ 200, Ax ¼ 0.1, f/St0 ¼ 0.55, 1.0, 1.45, 1.5, 1.75, 1.95, 2.2, and 2.8. Results for four frequency ratios are shown here

in Figs. 5 and 6; the frequency ratios are as follows: (a) 1.5, (b) 1.75, (c) 1.95, and (d) 2.2. The left-hand side of the

figures shows the time-histories of lift and of cylinder displacement (somewhat magnified), while the right-hand

side gives Lissajous patterns for lift and nondimensional cylinder displacement. Note that in Fig. 5, the time-history is

shown between t ¼ 0 and 60, while in Fig. 6, t ¼ 240–300 was chosen in order to capture lock-in (although in (d) it was

not yet full). If full lock-in is obtained, the Lissajous curves become limit cycle curves. As can be seen, quite

reasonable agreement has been obtained between the two sets of results. Similar agreement was found for the cases not

shown here.
3. Orbital motion

Fig. 7 shows the flow arrangement for an orbiting cylinder. The orbital motion of the cylinder is created by the

superposition of two forced oscillations with identical frequencies. The motion of the centre of the cylinder with unit

diameter is specified as follows:

x0ðtÞ ¼ Ax cosð2pf xtÞ; y0ðtÞ ¼ Ay sinð2pf ytÞ. (18)

Here fx ¼ fy ¼ f for which nonzero Ax and Ay amplitudes gives an ellipse, shown in the dotted line in Fig. 7. Ax alone

yields pure in-line oscillation, and then as Ay is increased, the ellipticity e ¼ Ay/Ax increases to yield a full circle at e ¼ 1.

Eq. (18) makes the cylinder orbit anticlockwise (counterclockwise); by changing the sign of y0 in Eq. (18), a clockwise

orbit is obtained. Later in this paper, the effect of orbital direction and that of the initial condition are investigated.

During each set of computations, Re and Ax are fixed, and fx and fy are kept constant at 85% or 90% of the

frequency of vortex shedding from a stationary cylinder case denoted by St0. The predicted values for St0 at Re ¼ 120,

160, 180 are 0.1751, 0.1882, 0.1930, respectively (Baranyi and Lewis, 2006), and they are calculated using the power

spectral density of the lift coefficient for the case of uniform flow past a stationary cylinder. The fx ¼ fy ¼ f values were

chosen to be near to the value of St0 to ensure lock-in (synchronisation of vortex shedding frequency with that of the

cylinder oscillation) at moderate oscillation amplitudes.

Computational results for orbital motion were compared with those of Didier and Borges (2008), who used a fully

coupled finite volume method for computing flow around a cylinder forced to move along a circular path at Re ¼ 300.

The maximum cylinder velocity components were identical and were set at 10% of the free-stream velocity U. The

frequency ratio of forced oscillation f/St0 was varied from 0.1 to 2.9. Since the cylinder velocity is obtained as a product

of frequency and amplitude, a change in frequency caused the amplitude of cylinder motion to change inversely. To

compare results, I carried out computations for a cylinder in circular orbit over the frequency ratio range of 0.5–2.8, for

Strouhal number, CDmean, and the rms of lift and drag. Strouhal number curves versus frequency ratio for both methods

are shown in Fig. 8. Both methods captured lock-in in the frequency ratio ranges of around 0.92–1.0 and 1.65–2.13, and

the curves are in general agreement. The TMV of drag is shown in Fig. 9. The present method predicts slightly higher

drag coefficient values (see Fig. 9(b)); however, agreement was good—surprisingly good, considering the difficulty in
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determining the TMV and rms values outside the lock-in domain, where the signals tend to be quite irregular—and the

curves follow a very similar tendency throughout the frequency ratio domain. Similar agreement was found in the

curves of rms values of lift and drag (not shown here).
Fig. 9. Time-mean drag versus frequency ratio for a cylinder in circular orbit (Re ¼ 300, Ax ¼ Ay, St0 ¼ 0.214), comparing (a) Didier

and Borges (2008) and (b) Baranyi (circular orbit) (by permission of the publisher).

Fig. 8. Strouhal number versus frequency ratio for a cylinder in circular orbit (Re ¼ 300, Ax ¼ Ay, St0 ¼ 0.214), comparing (a) Didier

and Borges (2008) and (b) Baranyi (circular orbit) (by permission of the publisher).
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Fig. 7. Layout for the orbital path of the cylinder.
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Now that it has been shown that the results obtained by the code compare well with computational results for orbital

cylinder motion as well as for stationary and oscillating cylinders, we investigate the effect of ellipticity on the force

coefficients. An interesting phenomenon was observed when looking at the TMV (also denoted by an overbar) and rms

values of the lift, drag and base pressure coefficients for an orbiting cylinder in a uniform flow. Abrupt jumps were

found when these values were plotted against ellipticity e with Re and Ax kept constant (Baranyi, 2005a). A typical

example for the TMV of the lift coefficient C̄L is shown in Fig. 10 (here Re ¼ 120, Ax ¼ 0.4, f ¼ 0.85St0 where

St0 ¼ 0.1751, anticlockwise orbit), where three sudden jumps in the curve can be seen. Both upper and lower curves are

almost straight lines and in general their slopes are almost identical. Two different states were found on the curve of C̄L

versus e, one with greater lift, and the other with smaller. Both show an approximately linear decrease with increasing e,
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Fig. 11. Root-mean-square value of lift coefficient versus ellipticity (Re ¼ 160, Ax ¼ 0.4, f ¼ 0.85St0, St0 ¼ 0.1882, anticlockwise

(aclw) orbit).
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Fig. 10. Time-mean value of lift coefficient versus ellipticity (Re ¼ 120, Ax ¼ 0.4, f ¼ 0.85St0, St0 ¼ 0.1751, anticlockwise (aclw)

orbit).
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and the difference between the C̄L values belonging to the two states is approximately constant. It was shown in Baranyi

(2004a, b) that the time histories of CL before and after the jumps are substantially different.

The TMV and rms of drag and base pressure, further the rms of lift, behaved differently from C̄L, characterised by

two state or envelope curves which are not parallel but intersect each other at e ¼ 0. A typical example is shown in

Fig. 11 (Re ¼ 160, Ax ¼ 0.3, f ¼ 0.85St0, where St0 ¼ 0.1882, anticlockwise orbit). Further details about the jumps, the

state curves, and the effect of Reynolds number and oscillation amplitude Ax can be found in Baranyi (2004a, b, 2005a,

2006). In addition, Lewis (2006), using the vortex cloud method, was able to reproduce three of the cases reported in

Baranyi (2004a), finding jumps in the TMV and rms of lift and drag, plotted against the amplitude of transverse

oscillation. Lewis’ results lend support to the findings here, which indicate that there are two states, or two solutions

and the solution jumps from one state to the other and back. It appears that these sudden changes in the time-mean and

rms lift and other coefficients are the symptoms of sudden change in the vortex structure. What triggers these changes is

uncertain; probably there are two attractors (periodic orbits in this case), each with its ‘basin of attraction’, of this

nonlinear system and the solution is attracted to one or the other of the attractors depending on the values of the

parameters. Let us investigate whether energy transfer is affected by the changes in state.

4. Energy transfer

The mechanical energy transfer between fluid and a transversely oscillated cylinder was defined in Blackburn and

Henderson (1999) and is here extended to encompass the bidirectional character of orbital motion. In this case,

mechanical energy transfer (E) takes place in both transverse and in-line directions. E is determined when the flow is

already periodic and hence (y0, CL) and (x0, CD) represent limit cycles. Energy transfer E is positive when work is done

on the cylinder and negative when work is done on the fluid by the cylinder.

Extending Blackburn and Henderson (1999)’s definition of E (mechanical energy transferred from the fluid to the

moving cylinder per motion cycle), E can be written as follows:

E ¼
2

rU2d2

Z T

0

F � v0 dt ¼
2

rU2d2

Z T

0

ðFDv0x þ FLv0yÞdt ¼

Z T

0

ðCD _x0 þ CL _y0Þdt ¼ E2 þ E1, (19)

where T is the motion period, x0 and y0 represent the dimensionless displacement of the cylinder in the x- and

y-directions, respectively, and the overdot means differentiation by dimensionless time. Naturally, everything is

dimensionless in the final integral in Eq. (19). As can be seen, the energy transfer can be divided into two parts, E1 and

E2. Using Green’s theorem E1 can be written, for example, as:

E1 ¼

Z T

0

CLðtÞ _y0ðtÞdt ¼

I
CL dy0 ¼ �

I
y0 dCL ¼

1

2

I
CL dy0 �

I
y0 dCL

� �
.

Here line integrals are to be taken in clockwise direction. Similarly the energy transfer in the in-line direction is

E2 ¼

Z T

0

CDðtÞ _x0ðtÞdt ¼

I
CD dx0 ¼ �

I
x0 dCD ¼

1

2

I
CD dx0 �

I
x0 dCD

� �
.

The geometrical meaning of E1 and E2 is the signed area enclosed by limit cycles (y0, CL) and (x0, CD), respectively. E1

and E2 are positive when the orientation of the limit cycle curves is anticlockwise. Based on Eq. (19), the total energy

transfer between fluid and cylinder is

E ¼ E2 þ E1.

5. Computational results and discussion

Computations were repeated for five different cases at 0.9St0: Ax ¼ 0.4 for Re ¼ 120 and 140; Ax ¼ 0.2 and 0.3 for

Re ¼ 160; and Ax ¼ 0.3 for Re ¼ 180. Here, results are mainly given for the case of Re ¼ 160, as it generally represents

other Re cases considered in this study.

5.1. Energy transfer results

Here, one set of results will be shown for the case of both clockwise and anticlockwise orbits at Re ¼ 160, Ax ¼ 0.3,

and f ¼ 0.9St0 ¼ 0.16938, where St0 is the Strouhal number for a stationary cylinder at the given Re. The ellipticity e



ARTICLE IN PRESS
L. Baranyi / Journal of Fluids and Structures 24 (2008) 883–906 895
was fixed for a single computation, then reset to a new e value for the next, to cover regularly and fairly

densely the ellipticity domain from 0 (pure in-line oscillation) to 1.2 (past a full circle). The reason for this was to

be able to identify any jumps occurring in the domain. When a sudden change occurred, several additional

computations were performed on either side of the jump. The initial condition for both orbital directions was set at x0

(t ¼ 0) ¼ Ax, y0 (t ¼ 0) ¼ 0 (3 o’clock position). The data shown here is representative of the several sets of

computations performed.

Fig. 12 shows the mechanical energy variation with ellipticity for the parameters given above, for a clockwise

direction of orbit. Here we can see energy transfer between the fluid and the body in the transverse direction E1

(shown by empty squares). Note that E1 values are positive for the upper state curve, meaning that energy is transferred

from the fluid into the cylinder, and negative for the lower curve, with the energy transfer reversed, acting to dampen

the motion. The energy transfer in the in-line direction E2 (shown by empty diamonds) consists of two state curves, and

all values are negative for both the upper and lower curves. This means that the force acting on the cylinder from the

fluid would oppose the cylinder motion if it were not mechanically forced motion. Compared with E1, the jumps occur

at the same values of e, and the shape of the state curves is more or less reversed. Since the jumps are caused by the same

sudden change in the vortex structure, the location of the jumps for one set of parameters is identical for all time-mean

and rms values. The filled triangle signs represent the sum of the energy transfer in transverse and in-line directions

E ¼ E1+E2. The shape is that of E1 but, like E2, all of the values are negative, and thus the energy transfer for an

orbiting cylinder was found to be always negative in the ellipticity domain investigated. The work, therefore, is done on

the fluid by the cylinder, and naturally the fluid produces a kind of resistance against the forced motion of the cylinder.

Computations were repeated for the anticlockwise direction of orbit, and identical curves to those of the clockwise orbit

were obtained for E1, E2 and the sum of these two.

Next we will take a closer look at the jumps. This has been done by investigating the time-history lift coefficient

curves [see Baranyi (2004a)], where it was found that the shape of the signals before and after a jump was substantially

different, leading to different time-mean and rms values of lift. Here, the limit cycles are investigated before and after a

jump, for a clockwise orbit at the parameters given at the beginning of this subsection. The jump investigated was at

about e ¼ 0.1435 (see, for instance, Fig. 12). Fig. 13 shows the two limit cycles (y0, CL) in periodic flow representing the

transverse cylinder motion component of an anticlockwise orbit. The limit cycle for the e value before the jump,

e ¼ 0.143 (Ay ¼ 0.0429), is shown by the thinner line. The thicker line represents the limit cycle just after the jump, at

e ¼ 0.144 (Ay ¼ 0.0432). Although the e values hardly differ, the two limit cycle curves are completely different, almost

reflecting each other, and with a change in orientation of traverse around the limit cycles. This means that the sign of

energy transfer is opposite for the two curves: negative for e ¼ 0.143 (E1 ¼ �0.0521) and positive for e ¼ 0.144

(E1 ¼ 0.0491). This finding is very similar to that of Blackburn and Henderson (1999) and Blackburn (2003) for a

transversely oscillated cylinder with varying oscillation frequency. They also found a change in the orientation of the

limit cycles, indicating a sign change in energy transfer. Although orbital motion is different from pure transverse

motion, since the reflection symmetry is destroyed, there is some similarity in that the solution can be very sensitive to

even a small change in Ay, which can lead to a dramatic change in the limit cycle curves (y0, CL) and in the sign of E1,

i.e., energy transfer between the cylinder and the fluid in the transverse direction.
0
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Fig. 12. Energy transfer coefficients E1, E2 and E versus ellipticity (Re ¼ 160, Ax ¼ 0.3; f ¼ 0.9St0, St0 ¼ 0.1882, clockwise orbit).
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Fig. 13. Limit cycles (y0, CL) (thin line: Ay ¼ 0.0429; thick line:Ay ¼ 0.0432) (Re ¼ 160, Ax ¼ 0.3, f ¼ 0.9St0, St0 ¼ 0.1882, clockwise

orbit).

Fig. 14. Limit cycles (x0, CD) (thin line: Ay ¼ 0.0429; thick line: Ay ¼ 0.0432) (Re ¼ 160, Ax ¼ 0.3, f ¼ 0.9St0, St0 ¼ 0.1882, clockwise

orbit).
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Fig. 14 shows the two limit cycles (x0, CD) in periodic flow representing the in-line cylinder motion component of an

anticlockwise orbit. Again the limit cycle for the e value before the jump, at e ¼ 0.143 (Ay ¼ 0.0429), is shown by the

thinner line. The thicker line represents the limit cycle just after the jump, at e ¼ 0.144 (Ay ¼ 0.0432). As can be seen in

this figure, in contrast with the results shown in Fig. 13, the small change in the value of ellipticity did not cause any

drastic change in the two limit cycle curves. The shape of the curves is almost the same and their orientation is identical.

This orientation means negative energy transfer values: E2 ¼ �0.6947 for e ¼ 0.143 and E2 ¼ �0.7663 for e ¼ 0.144.

As can be seen, the absolute value of E2 is much larger than that of E1 with the same e values, so that the overall energy

transfer E, i.e., the sum of E1 and E2, is negative for both of these cases.

Interestingly, the limit cycle for transverse displacement changes radically with a tiny change in ellipticity, but the

limit cycle for in-line motion hardly changes at all. This means that the limit cycle for the lift coefficient and
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nondimensional transverse displacement is much more sensitive to the trigger for the jumps than is the limit cycle based

on the drag coefficient and in-line displacement. This result suggests that lift and drag will behave differently in other

measures of examining the jump phenomenon, such as phase angle analysis.

5.2. Phase angle results and flow patterns

Several studies, all for transversely oscillated cylinders [see e.g. Lu and Dalton (1996) for Re ¼ 185, 500, and 1000;

Blackburn and Henderson (1999) for Re ¼ 500; Blackburn (2003)] also for Re ¼ 500), have shown a sudden shift

occurring in the phase angle under lock-in condition when the cylinder oscillation frequency at a given Reynolds

number is in the vicinity of the vortex shedding frequency from a stationary cylinder at that Re. Because of this, it

seemed worthwhile to investigate the phase angle FL between the lift coefficient and displacement of the cylinder in

transverse direction.

The phase angle FL is defined for clockwise and anticlockwise cylinder orbit in the sense of

clockwise : y0 ¼ �Ay sinð2pftÞ; CL � �AL sinð2pftþ FLÞ,

anticlockwise : y0 ¼ Ay sinð2pftÞ; CL � AL sinð2pftþ FLÞ,

where AL is the amplitude of lift coefficient.

Fig. 15 shows that there is indeed a drastic change in the phase angle FL. The solid line, with a sine wave with the

amplitude of 1.5, represents the time-history of transverse cylinder displacement. The amplitude, which is considerably

smaller in reality, has been exaggerated here to provide a convenient means to visualise the phase angle. The dotted line

is the lift coefficient at Ay ¼ 0.0429 (e ¼ 0.143), prior to the jump, while the heaviest line (composed of crosses) is the lift

at Ay ¼ 0.0432 (e ¼ 0.144), after the jump. The pre-jump curve is basically in phase with the cylinder displacement,

while the post-jump curve is essentially reversed, yielding a phase shift of about 1801. Thus, the jump has created a

sudden change in the phase angle of about 1801 for lift.

The effect of the jump on the phase angle between drag and in-line cylinder displacement, on the other hand, is

almost negligible, as seen in Fig. 16. The solid line again represents the time-history of displacement. The two hardly

distinguishable lines are the pre-jump drag coefficient at Ay ¼ 0.0429 (dotted line) and the post-jump drag at

Ay ¼ 0.0432 (the heaviest line).

These findings suggest that any follow-up investigation should focus on the phase angle between lift and transverse

displacement. Therefore, for the representative case (Re ¼ 160, Ax ¼ 0.3, f ¼ 0.9St0 ¼ 0.16938), FL is determined and

plotted versus ellipticity in Fig. 17 for both clockwise (empty square) and anticlockwise (filled triangle) directions of

orbit. The two curves practically coincide, showing that phase angle is insensitive to the direction of orbit. The two

curves have jumps at the same location as for the other curves (e.g., in Fig. 12). Comparing Figs. 12 and 17, it can be

observed that when the energy transfer in the transverse direction E140, then the phase angle is FLC1801, and when it

is negative, then FLC01. This 1801 phase shift through the jumps is in agreement with the findings of Lu and Dalton

(1996), Blackburn and Henderson (1999) and Blackburn (2003).

One hypothesis for the sudden changes in phase angle in the case of a transversely oscillated cylinder is that the

change in flow structure results from a change in balance between two different vorticity production mechanisms, as

proposed by Blackburn and Henderson (1999) and Blackburn (2003). They investigated forced transverse cylinder

oscillation at Re ¼ 500 and a nondimensional amplitude of oscillation of 0.25, while changing the frequency ratio near

the natural shedding frequency (0.75–1.05). Switches in phase angles and flow patterns were found when comparing

results for frequency ratios of 0.875 and 0.975. They suggest that the switches are due to competition between two

vorticity production mechanisms. This hypothesis seems to be a likely explanation for the switching phenomenon found

here for orbiting cylinders.

Fig. 18 displays computed flow patterns showing near-wake streamlines at cylinder positions in 301 steps in

the polar angle Y for a clockwise orbit at two ellipticity values (pre- and post-jump, for the same jump as in, e.g.,

Figs. 12–17). A vertical view of the flow patterns shows the development of vortices at the two ellipticity values given.

The flow patterns, when viewed in horizontal pairs, illustrate the fact that the timing of the vortex shedding

is changed dramatically by a very small change in the ellipticity (from e ¼ 0.143 to 0.144), to almost a mirror image of

each other. These sudden changes in the flow pattern are similar to those found by Blackburn (2003) when he

altered the frequency of transverse cylinder oscillation. He plotted vorticity contours at a point of maximum cylinder

displacement for two frequency ratios, one below and the other above a critical frequency ratio belonging to

a switch. Flow patterns represented by vorticity contours were substantially different in the two cases and also the

energy transfer between the cylinder and fluid per motion cycle was of the opposite sign for the two cases (Blackburn,

2003). Both of these features are found in the present study when considering flows around an orbiting cylinder
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Fig. 15. Time histories of lift coefficient and cylinder displacement (solid line: transverse cylinder displacement; dotted line: CL at

Ay ¼ 0.0429; +line:CL at Ay ¼ 0.0432) (Re ¼ 160, Ax ¼ 0.3, f ¼ 0.9St0, St0 ¼ 0.1882, clockwise orbit).

Fig. 16. Time histories of drag coefficient and cylinder displacement (solid line: in-line cylinder displacement; dotted line: CD at

Ay ¼ 0.0429; +line: CD at Ay ¼ 0.0432) (Re ¼ 160, Ax ¼ 0.3, f ¼ 0.9St0, St0 ¼ 0.1882, clockwise orbit).
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with ellipticity below and above the critical ellipticity value. It seems likely that the small change in ellipticity has caused

the boundary between two basins of attraction of this nonlinear system to be crossed, leading to a switch in flow

pattern.

5.3. Effect of orbital direction

Here, one set of results will be shown for the case of both clockwise and anticlockwise orbits at Re ¼ 160, Ax ¼ 0.3,

and f ¼ 0.9St0, where St0 is the Strouhal number for a stationary cylinder at Re ¼ 160 (i.e., St0 ¼ 0.1882). This set is

representative of the several sets of computations performed.
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Fig. 17. Phase angle (in degrees) versus ellipticity for clockwise (clw) and anticlockwise (aclw) cylinder orbit (Re ¼ 160, Ax ¼ 0.3,

f ¼ 0.9St0, St0 ¼ 0.1882).
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Fig. 19 gives C̄L versus ellipticity e. The filled triangles show results for a cylinder orbiting anticlockwise (aclw in the

figure). Note that there are two state curves that are roughly parallel with each other and of negative slope, as seen

earlier in Fig. 10. The empty squares in Fig. 19 show results for a clockwise (clw) orbit, with the other parameters

unchanged. The two state curves can be seen, again roughly parallel, but the slope is positive, and they form a mirror

image of the state curves of the cylinder orbiting anticlockwise. There are four jumps or switches in state, although this

is difficult to identify at this scale; there is therefore no change in jump location with orbital direction. In all

computations done so far, C̄L has shown this pattern: a mirror image of each other, with the slope of the anticlockwise

curve being negative and that of the clockwise curve positive.

Unlike C̄L, the other TVM and all of the rms values investigated, when plotted against ellipticity, are basically

unaffected by the direction of orbit. Fig. 20 gives the curves for Cpbrms as a representative of this group (in which state

curves intersect at zero ellipticity). Results for the clockwise and anticlockwise direction of orbit fall on the same state

curves and jump locations, so that it is difficult to distinguish the two curves.

From the sets of computations for the two orbital directions, it is clear that two pairs of state curves exist and fall into

two different categories: for C̄L, the state curves are roughly parallel, and for the rest the curves intersect at zero. This is

reassuring in two ways: (i) the code produces the same time-mean and rms results for two different situations

represented by the two directions of orbit, and this confirms that the code is reliable, and (ii) results obtained for two

different cases strengthen the hypothesis of the existence of two solutions, or two basins of attraction.

Apart from the TMV of lift, it was found that the direction of orbit has basically no effect on time-mean and rms

values of the force coefficients. However, it may be worth noting that since C̄L is affected, it may be necessary to take

the direction of orbit into consideration when using results from orbital studies, most of which are carried out using

only one orbital direction.

5.4. Effect of initial condition

Here we examine the effect of initial condition, or what happens when a cylinder is started from a different position

along its path. Let us write the cylinder motion in the following forms:

x0ðtÞ ¼ Ax cosð2pftþYÞ; y0ðtÞ ¼ �Ay sinð2pftþYÞ,

whereY is a polar angle measured clockwise from positive x-axis, representing the initial position of the centre of the cylinder.

For earlier clockwise computations, the initial conditions were x0 (t ¼ 0) ¼ Ax, y0 (t ¼ 0) ¼ 0 (i.e.,Y ¼ 01; 3 o’clock position)

for the standard case in this paper (Re ¼ 160; Ax ¼ 0.3; f ¼ 0.9St0 ¼ 0.16938). The computations were repeated for a

clockwise orbit using a different initial condition x0 (t ¼ 0) ¼ �Ax, y0 (t ¼ 0) ¼ 0 (i.e., Y ¼ 1801; 9 o’clock position).

Figs. 21 and 22 give two representative state curves, for C̄L (where the two state curves are almost parallel with each

other) and for E1 (where the state curves intersect at zero ellipticity), respectively. The two pairs of C̄L state curves in

Fig. 21 are identical, in contrast with Fig. 19, where the change in orbital direction caused the state curves to switch
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Fig. 18. Flow patterns for Ay ¼ 0.0429 (left-hand column) and Ay ¼ 0.0432 (right-hand column) at equidistant cylinder positions Y
(Re ¼ 160, Ax ¼ 0.3, f ¼ 0.9St0, St0 ¼ 0.1882, clockwise orbit).
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Fig. 19. Time-mean value of lift coefficient versus ellipticity for clockwise (clw) and anticlockwise (aclw) cylinder orbit (Re ¼ 160,

Ax ¼ 0.3, f ¼ 0.9St0, St0 ¼ 0.1882).
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Fig. 20. Root-mean-square value of base pressure coefficient versus ellipticity for clockwise (clw) and anticlockwise (aclw) cylinder

orbit (Re ¼ 160, Ax ¼ 0.3, f ¼ 0.9St0, St0 ¼ 0.1882).
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slope. The initial condition, however, affects the location of jumps between the two state curves. The E1 state curves in

Fig. 22 show basically the same features, in that the two pairs of state curves are identical, and the change in initial

condition changes the location of jumps (this can perhaps be more easily seen by comparing the E1 curve in Fig. 12 with

the Y ¼ 1801 curve in Fig. 22). If Figs. 21 and 22 are compared, it is evident that the location of jumps is identical for

the C̄L and E1 curves at each initial condition, and this correspondence is true for every force coefficient investigated, as

well as for the energy transfer per motion cycle.

It is interesting that, although the state curves are identical, shifting the starting point of calculations has changed the

location of the jumps. For all five sets of computations at different Re and Ax, specified at the beginning of this section,

exactly the same type of results were obtained. For each set of variables (the TMV and rms of CL, CD and Cpb, and the

mechanical energy transfer E1, E2 and E), the location of jumps for the same initial condition was always the same. Unlike a

change in orbital direction, a change in the initial conditions prompts an alteration in the ellipticity value at which the

switch in the vortex structure takes place. Thus, we have established that a change in any one parameter in a set of five

parameters (Re, Ax, e, f and initial cylinder position Y) can influence the attractor to which the solution is attracted.

Computations were repeated for different initial conditions for the same case, also in clockwise orbit. It was found

that with only three different initial cylinder positions of Y ¼ 601, 901 and 1801 (corresponding to 5, 6 and 9 o’clock

cylinder positions, respectively) the two state curves can be almost fully reproduced in the rms values or TMV of lift,

drag and base pressure coefficients versus ellipticity e plane. Fig. 23 shows this for the TMV of the lift coefficient. If we

check the figure more carefully, we can see that there is a small interval at e ¼ 0.258–0.275 (see Fig. 24, the zoomed-out
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version of Fig. 23), where only the lower state curve is fully realised. The length of the gap in the upper state curve is

about 1.4% of the domain of e investigated here (0–1.2).

Although additional computations were done at several different Y values, interestingly, none of them were able to

realise the upper state curve in the critical e ¼ 0.258–0.275 domain. Further investigation may reveal an appropriate

value, or find an explanation for this curious gap. The very fact that the gap exists suggests the complexity of the

boundaries between the basins of attraction. It may be that with this combination of parameters (Re, Ax, f/St0) in the

critical e domain, only the solution belonging to the lower state curve can be reached.

6. Conclusions

The present study deals with an orbiting cylinder, in forced motion, placed in a uniform flow at low Reynolds

numbers (Re ¼ 120–180). The objective of the paper was to investigate further the phenomenon of sudden changes in

vortex structure that occur when the ellipticity of the orbital path is changed.

6.1. Energy transfer and phase angle

The definition of mechanical energy transfer between a transversely oscillated cylinder and fluid [see Blackburn and

Henderson (1999)] was extended here for use with a cylinder mechanically forced to follow an orbital path. Energy
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transfer in this case is composed of two parts, E1 for the energy transfer in the transverse direction, and E2 for the in-line

direction. These variables were investigated against different values of ellipticity. The overall energy transfer E is always

negative, meaning that energy is transferred from the cylinder to the fluid. The sign of E1 determines the magnitude of

the phase angle between lift and transverse cylinder displacement (if positive, then phase angle FLE1801, if negative,

FLE01). The location of jumps in the FL–e curve were identical to the location of jumps for time-mean and rms values

and for energy transfer E1, E2 and E.

6.2. Limit cycles

Limit cycle curves were investigated immediately prior to and after a jump. The limit cycle for the transverse

displacement and lift changes radically with a tiny change in ellipticity, but the limit cycle for the in-line motion and

drag hardly changes at all. This shows that the limit cycle for the lift coefficient and nondimensional transverse
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displacement is much more sensitive to the trigger for the jumps than is the limit cycle based on the in-line displacement

and drag coefficient.

6.3. Flow patterns

Flow patterns for two ellipticity values around the full shedding cycle illustrate the development of near-wake

vortices. Comparison of the two sets shows that the timing of the vortex shedding is changed dramatically to a near-

mirror image by a very small change in the ellipticity (from e ¼ 0.143 to 0.144).

6.4. Orbital direction

Clockwise and anticlockwise cylinder orbits were compared. From the sets of computations for the two orbital

directions, it is clear the two pairs of state curves fall into two different categories: for the time-mean of lift, the state

curves are roughly parallel, and the slope changes with orbital direction to a mirror image; while for the other, time-

mean and rms values the curves intersect at zero ellipticity and do not change with the change in orbital direction.

Apart from the time-mean of lift, it was found that the direction of orbit has basically no effect on the time-mean and

rms values of the force coefficients. The location of the jumps was unaffected for all curves belonging to a given

set of data.

6.5. Initial conditions

A change in initial cylinder position produces state curves that are identical, but changes the location of the jumps for

all time-mean and rms values belonging to the same set of parameters investigated, and changes them to the same

location for each of the cases. Since the jumps are caused by the same sudden change in the vortex structure, the

location of the jumps for one set of parameters is identical for all time-mean and rms values. Unlike a change in orbital

direction, a change in the initial condition prompts an alteration in the ellipticity value at which the switch in the vortex

structure takes place. By changing the initial cylinder position while keeping all other parameters fixed, it may be

possible to reach either the upper state curve or the lower; both solutions may therefore be attainable at the same

ellipticity value.

This study confirms that two possible flow structures exist and shows that small changes in ellipticity or changes in

initial conditions can cause a sudden switch in state. It seems that in the ‘basins of attraction’ there are two attractors in

the form of periodic orbits, and a change in any one parameter in a set of five parameters (Reynolds number,

amplitudes of in-line and transverse oscillation, frequency of cylinder oscillation, and initial cylinder position) can

influence which attractor the solution is attracted to.
Acknowledgements

The support provided by the Hungarian Research Foundation (OTKA, Project no. T 042961) is gratefully

acknowledged. The author also thanks Mr S. Ujvárosi for preparing several figures.
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Öngören, A., Rockwell, D., 1988. Flow structure from an oscillating cylinder. Part 1. Mechanisms of phase shift and recovery in the

near wake. Journal of Fluid Mechanics 191, 197–223.

Poncet, P., 2004. Topological aspects of three-dimensional wakes behind rotary oscillating cylinders. Journal of Fluid Mechanics 517,

27–53.

Roshko, A., 1954. On the development of turbulent wakes from vortex streets. NACA Report 1191.

Roshko, A., 1993. Perspectives on bluff body aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics 49, 79–100.

Sarpkaya, T., 1986. Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers. Journal of Fluid

Mechanics 165, 61–71.

Sarpkaya, T., 2001. On the force decompositions of Lighthill and Morrison. Journal of Fluids and Structures 15, 227–233.

Schlichting, H., 1951. Grenzschict-Theorie. Reissued as Boundary-Layer Theory, seventh ed., 1987, McGraw-Hill, New York.

Stansby, P.K., Rainey, R.C.T., 2001. On the orbital response of a rotating cylinder in a current. Journal of Fluid Mechanics 439,

87–108.
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